26 research outputs found

    Barbell Trajectory and Kinematics during Two International Weightlifting Championships

    Get PDF
    Several methods have been used in the scientific literature to study the weightlifting pull. Broadly, these methods are used to measure kinematic or kinetic variables exhibited by the lifter, the barbell, or the lifter-barbell system. However, there is an apparent disconnect between weightlifting research and coaching practice that may reduce the perceived benefits of technique analysis among coaches and present some challenges for coaches who seek to incorporate technique analysis into their coaching practice. Differences and trends in the technique of competitive weightlifting performances are apparent from the available literature. However, there are also gaps in the literature due to infrequent analyses that are limited to narrow subgroups of the weightlifting population. Therefore, the purposes of this dissertation were to 1) update to the scientific knowledge of weightlifting technique and performance, 2) improve coaches’ ability to conduct and interpret technique analysis, and 3) enhance transferability of weightlifting in training to improve sport performance. A review of methods used to evaluate the weightlifting pull provides some practical guidance for coaches on the application and interpretation of weightlifting technique analysis. Video analysis is recommended as the most practicable method for coaches to implement technique analysis themselves. Methods used to study 319 lifts by women and men from two major international competitions demonstrate the feasibility and usefulness of video analysis as an inexpensive, time-efficient, and user-friendly method for coaches to conduct reliable technique analysis. The results of this dissertation suggest that a variety of techniques can be used to achieve international weightlifting success and provide some evidence of changes in weightlifting technique since at least the mid-1980’s. These results also indicate that a stereotypical technique profile among elite international weightlifters does not exist, which further support the notion that strength is a primary determinant of weightlifting ability

    Phase- Specific Changes in Rate of Force Development and Muscle Morphology throughout a Block Periodized Training Cycle in Weightlifters

    Get PDF
    The purpose of this study was to investigate the kinetic and morphological adaptations that occur during distinct phases of a block periodized training cycle in weightlifters. Athlete monitoring data from nine experienced collegiate weightlifters was used. Isometric mid-thigh pull (IMTP) and ultrasonography (US) results were compared to examine the effects of three specific phases of a training cycle leading up to a competition. During the high volume strength-endurance phase (SE) small depressions in rate of force development (RFD) but statistically significant (p ≀ 0.05) increases in vastus lateralis cross-sectional area (CSA), and body mass (BM) were observed. The lower volume higher intensity strength-power phase (SP) caused RFD to rebound above pre-training cycle values despite statistically significant reductions in CSA. Small to moderate increases only in the earlier RFD time bands (\u3c150 \u3ems) occurred during the peak/taper phase (PT) while CSA and BM were maintained. Changes in IMTP RFD and CSA from US reflected the expected adaptations of block periodized training phases. Changes in early (\u3c100 \u3ems) and late (≄150 ms) RFD time bands may not occur proportionally throughout different training phases. Small increases in RFD and CSA can be expected in well-trained weightlifters throughout a single block periodized training cycle

    Changes in Maximal Strength and Home Run Performance in Ncaa Division I Baseball Players Across 3 Competitive Seasons: A Descriptive Study

    Get PDF
    The purpose of this longitudinal, descriptive study was to observe changes in maximal strength measured via isometric clean grip mid-thigh pull and home runs (total and home runs per game) across three years of training and three competitive seasons for four National Collegiate Athletic Association (NCAA) Division 1 baseball players. A one-way repeated measures analysis of variance (ANOVA) was performed, revealing significant univariate effects of time for peak force (PF) (p = 0.003) and peak force allometrically scaled (PFa) (p = 0.002). Increases in PF were noted from season 1 to season 2 (p = 0.031) and season 3 (p = 0.004), but season 2 was not significantly different than season 3 (p = 0.232). Additionally, increases in PFa were noted from season 1 to season 2 (p = 0.010) and season 3 (p \u3c 0.001), but season 2 was not significantly different than season 3 (p = 0.052). Home runs per game rose from the 2009 (0.32) to 2010 season (1.35) and dropped during the 2011 season (1.07). A unique aspect of the study involves 2010 being the season in which ball-bat coefficient of restitution (BBCOR) bats were introduced to the NCAA competition

    Performance Comparisons of Youth Weightlifters as a Function of Age Group and Sex

    Get PDF
    This study was designed to provide an overview of weightlifting performance as a function of age group and sex and evaluate the potential of countermovement jump height (CMJH) as a tool to gauge performance potential. Data from 130 youth athletes (female, n = 65 & male, n = 65) were used to examine progression of performance (Total and Sinclair total) and the relationship between CMJH and Sinclair total while considering interactions between CMJH and age and/or sex. ANOVAs with post hoc analyses revealed that both totals had a statistical first-order polynomial interaction effect between age group and sex and the difference between age groups of 12–13 and 14–15 years old was statistically greater for male than female. A linear model, developed to examine the relationship, revealed that CMJH and CMJH x sex x age rejected the null hypothesis. Our primary findings are that male youth weightlifters have a higher rate of performance progression, possibly owing to puberty, and CMJH may be a better gauging tool for older male youth weightlifters

    Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities

    Get PDF
    The purpose of the current study was (1) to examine the differences between standing and lying measures of vastus lateralis (VL), muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) using ultrasonography; and (2) to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production—specifically peak force, rate of force development (RFD), impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34) agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF), as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p \u3c 0.001), PA (p \u3c 0.001), and CSA (p ≀ 0.05), with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred

    Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities

    Get PDF
    The purpose of the current study was (1) to examine the differences between standing and lying measures of vastus lateralis (VL), muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) using ultrasonography; and (2) to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production—specifically peak force, rate of force development (RFD), impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34) agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF), as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p \u3c 0.001), PA (p \u3c 0.001), and CSA (p ≀ 0.05), with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred

    Repetition-to-Repetition Differences Using Cluster and Accentuated Eccentric Loading in the Back Squat

    Get PDF
    The current investigation was an examination of the repetition-to-repetition magnitudes and changes in kinetic and kinematic characteristics of the back squat using accentuated eccentric loading (AEL) and cluster sets. Trained male subjects (age = 26.1 ± 4.1 years, height = 183.5 ± 4.3 cm, body mass = 92.5 ± 10.5 kg, back squat to body mass ratio = 1.8 ± 0.3) completed four load condition sessions, each consisting of three sets of five repetitions of either traditionally loaded straight sets (TL), traditionally loaded cluster sets (TLC), AEL cluster sets (AEC), and AEL straight sets where only the initial repetition had eccentric overload (AEL1). Eccentric overload was applied using weight releasers, creating a total eccentric load equivalent to 105% of concentric one repetition maximum (1RM). Concentric load was 80% 1RM for all load conditions. Using straight sets (TL and AEL1) tended to decrease peak power (PP) (d = −1.90 to −0.76), concentric rate of force development (RFDCON) (d = −1.59 to −0.27), and average velocity (MV) (d = −3.91 to −1.29), with moderate decreases in MV using cluster sets (d = −0.81 to −0.62). Greater magnitude eccentric rate of force development (RFDECC) was observed using AEC at repetition three (R3) and five (R5) compared to all load conditions (d = 0.21⁻0.65). Large within-condition changes in RFDECC from repetition one to repetition three (∆REP1⁻3) were present using AEL1 (d = 1.51), demonstrating that RFDECC remained elevated for at least three repetitions despite overload only present on the initial repetition. Overall, cluster sets appear to permit higher magnitude and improved maintenance of concentric outputs throughout a set. Eccentric overload with the loading protocol used in the current study does not appear to potentiate concentric output regardless of set configuration but may cause greater RFDECC compared to traditional loading

    Repetition-to-Repetition Differences Using Cluster and Accentuated Eccentric Loading in the Back Squat

    Get PDF
    The current investigation was an examination of the repetition-to-repetition magnitudes and changes in kinetic and kinematic characteristics of the back squat using accentuated eccentric loading (AEL) and cluster sets. Trained male subjects (age = 26.1 ± 4.1 years, height = 183.5 ± 4.3 cm, body mass = 92.5 ± 10.5 kg, back squat to body mass ratio = 1.8 ± 0.3) completed four load condition sessions, each consisting of three sets of five repetitions of either traditionally loaded straight sets (TL), traditionally loaded cluster sets (TLC), AEL cluster sets (AEC), and AEL straight sets where only the initial repetition had eccentric overload (AEL1). Eccentric overload was applied using weight releasers, creating a total eccentric load equivalent to 105% of concentric one repetition maximum (1RM). Concentric load was 80% 1RM for all load conditions. Using straight sets (TL and AEL1) tended to decrease peak power (PP) (d = −1.90 to −0.76), concentric rate of force development (RFDCON) (d = −1.59 to −0.27), and average velocity (MV) (d = −3.91 to −1.29), with moderate decreases in MV using cluster sets (d= −0.81 to −0.62). Greater magnitude eccentric rate of force development (RFDECC) was observed using AEC at repetition three (R3) and five (R5) compared to all load conditions (d = 0.21–0.65). Large within-condition changes in RFDECC from repetition one to repetition three (∆REP1–3) were present using AEL1 (d = 1.51), demonstrating that RFDECC remained elevated for at least three repetitions despite overload only present on the initial repetition. Overall, cluster sets appear to permit higher magnitude and improved maintenance of concentric outputs throughout a set. Eccentric overload with the loading protocol used in the current study does not appear to potentiate concentric output regardless of set configuration but may cause greater RFDECCcompared to traditional loadin

    Bivariate Functional Principal Component Analysis of Barbell Trajectories During the Snatch

    No full text
    The purpose of this study was to use bivariate functional principal components analysis (bfPCA) to quantify patterns in barbell trajectories during the snatch and to investigate whether these patterns correlate with weightlifting performance and biomechanical characteristics that characterise weightlifting technique. A motion capture system was used to record three-dimensional barbell trajectories as six weightlifters performed three snatch lifts during a weightlifting competition. Horizontal and vertical barbell positions of all lifts were used as input to a bfPCA. Weightlifting performance was quantified through the ratio of barbell mass/body-mass, whereas biomechanical variables were quantified through peak vertical barbell velocity and acceleration. The bfPCA extracted barbell trajectory patterns related to variations in general forward/backward motion (pattern 1), peak height (pattern 2), and crossing of the vertical reference line during the first pull (pattern 3). Spearman rank correlations showed that pattern 1 correlated positively with weightlifting performance and negatively with peak barbell velocity and acceleration. The opposite results were found for pattern 3. Interpretation of the extracted barbell trajectory patterns and statistical results suggest that better weightlifting performances were characterised by snatch lifts that exhibited general backward shifts and limited forward motions during the first and second pull, regardless of peak heights

    Dynamic Correspondence of Resistance Training to Sport: A Brief Review

    No full text
    THE PROPER APPLICATION OF THE PRINCIPLE OF SPECIFICITY IS ESSENTIAL TO ANY STRENGTH AND CONDITIONING PROGRAM. HOWEVER, THE TRANSFER OF RESISTANCE TRAINING TO SPORT IS HIGHLY COMPLEX, DIFFICULT TO PREDICT, AND CHALLENGING TO ASSESS. THIS BRIEF REVIEW EXAMINES THE PRINCIPLE OF DYNAMIC CORRESPONDENCE AS AN AID TOWARD BETTER UNDERSTANDING AND PREDICTING AN EXERCISE OR TRAINING METHOD\u27S POTENTIAL TRANSFER TO SPORT. PRACTICAL TRAINING RECOMMENDATIONS ARE GIVEN BASED ON THE RESEARCH REVIEWED
    corecore